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ABSTRACT  
 

We introduce a new inverse approach for efficiently identifying parameter structures (zonation) for the 
permeability field using the level set method, given spatially distributed observations of the permeability 
field (both lithology and/or permeability values) and hydraulic head measurements at various locations. In 
this preliminary study, the permeability field includes two different lithologies. In this method, the 
boundaries of zones are represented by a level set function. Starting from an initial choice, the boundary 
is then implicitly manipulated through the evolution of the level set function, which is sequentially 
optimized to match the observed data. No assumption has been made on the shape, size, locations, and 
the number of these zones, or the correlation structure and the proportion of different lithology. A 
synthetic example shows that this method can locate those embedded zones efficiently. 
 

INTRODUCTION  
 
Identifying parameter zonation is probably the most difficult in parameter identification problems. 
Traditionally, the heterogeneous domain of interest is divided into a number of zones and the parameter 
value in each zone is a constant to be determined. Although boundaries of these zones have significant 
impact on predicting flow and solute transport in the domain, in most cases we do not have enough direct 
information to infer the size, shape, locations, and the number of zones. Sun and Yeh [1985] were the 
first to propose a method to identify simultaneously both the parameter zonation and its parameter values 
for the hydraulic conductivity field. Using some model structure identification criteria, Carrera and Neuman 
[1986] were able to choose the best parameter zonation pattern among a number of given alternatives. 
Eppstein and Dougherty [1996] used a modified version of the extended Kalman filter to dynamically 
determine and refine zonation. Tsai et al. [2003] used Voronoi zonation to parameterize the unknown 
distributed parameter and solved the inverse problem by a sequential global-local optimization procedure. 
In this study, we introduce a new approach based on the level set method for zonation identification, 
applying the approach to a simple case of one material embedded in another. This method can be used 
to identify, for example, low-permeability layers in a relatively higher permeability porous media (or vice 
versa), or highly permeable fault zones in the subsurface. 
 
The level set method is a powerful tool for solving problems that involve geometric evolution [Osher and 
Sethian, 1988]. The method has been used in several fields, including image segmentation [Lie et al., 
2005], shape optimization problems [Burger, 2003], and inverse problems [Santosa, 1996]. One of the 
advantages of the level set method is that it is much easier to work with a globally defined function than to 
keep track of the boundaries of regions of interest, which may split into many regions or merge into larger 
ones. It is important to emphasize that, comparing with geostatistical inverse methods such as indicator 
(co)kriging, the inverse approach based on the level set method requires no a priori assumptions on 
shape, size and locations of zones to be sought or correlation structures of these zones.  
 

PROBLEM DESCRIPTION  
 
We consider transient fluid flow in saturated porous media governed by the following equation 
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subject to appropriate initial and boundary conditions. Here h(x,t) is the hydraulic head Ks is the hydraulic 
conductivity, g is source/sink term, Ss is the specific storage, x = (x1, x2, x3)T is the Cartesian coordinate, 
and t is the time. In this study, Ss is assumed to be a constant because its variation is relatively small 
comparing to that of the hydraulic conductivity.  It is also assumed that the saturated hydraulic 
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conductivity is a piecewise constant function, which is defined on a domain of interest that is partitioned 
into a number of unknown subdomains (zones). We do not have enough direct information regarding the 
exact size, shape, and locations of these zones. The problem is to identify parameter zonation, given 
observed lithologic types at some locations and head measurements at various locations and times. 
 

LEVEL SET REPRESENTATION OF ZONES 
 
Suppose that there is an unknown subset of Ω, denoted as D, representing the regions of low- (or high-) 
permeability zones. The boundary of D can be described by a function φ(x), ∂D = {x: φ(x) = 0}. 
Accordingly, the hydraulic conductivity field can be represented by a binary function 
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where DC = Ω\D is the complement of D, and Kint and Kext are the hydraulic conductivities of interior and 
exterior of D, respectively. Note that for a given D there are an infinite number of functions that satisfy ∂D 
= {x: φ(x) = 0}. However, any function φ(x) uniquely defines ∂D. This feature allows us to reinitiate φ(x) 
periodically without affect the boundary ∂D. 
 
The inverse problem described above is to find φ(x) such that 
the head field solved using the spatial distribution of different 
zones characterized by ∂D = {x : φ(x) = 0} matches head 
measurements at various observation points and times. Note 
that no assumption has been made on connectivity of D, i.e., D 
could be a disjoint set, or connected but including a number of 
holes. In addition, there is no assumption made regarding the 
number of zones, their sizes and locations, correlation 
structures, or proportions of two materials.  
 
Because the shape, size, and locations of set D are unknown, 
function φ(x) is also unknown. In the level set approach, we 
generate a sequence of functions φk(x), defining a sequence of 
regions ∂Dk = {x: φk(x) = 0}, such that Dk →D, as illustrated in 
Figure 1. In this iterative process, the number of zones and their shape, size, and locations are 
sequentially improved. The success of this method hinges on finding a strategy for efficiently propagating 
the boundary of Dk such that it approaches D.  

Ω

Kint, φ(x) < 0

∂D0 = {x: φ0(x) = 0 }

∂D = {x: φ(x) = 0 }

∂Dk = {x: φk(x) = 0 }

Kext, φ(x) > 0

D

Fig. 1 Schematic diagram illustrating 
the evolution of boundaries. 

 
FORMULATION OF INVERSE PROBLEM 

 
The inverse problem described above can be written as a problem of minimizing an objective function: 
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where h0 is a vector of head measurements, and H(K) is an operator that maps the hydraulic conductivity 
field to a head field (by solving flow equations) and then takes head values at observation locations and 
times.   
 
The directional derivative of function F(K) in the direction δK, the variation of K, is given by 
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where J(K) is the Jacobian of the head to hydraulic conductivity. In the discretized case, J is a (nh × nt) × 
N Jacobian matrix, whose components are Jij = dhi /dKj, i = 1, 2, …, nh × nt, j = 1,2, …, N, where N is the 
number of grid nodes in the domain Ω. 
 
For a given variation δφ (or δx) that propagates D to a new set 
D′, as shown in Figure 2, δK is non-zero only in D′′ = [D ∩ D'C] 
∪ [D' ∩ DC ], which represents those points that are either in D 
but not in D' or in D' but not in D. As a result, the integral in (4) 
can be reduced to an integral over D''. For an infinitesimal δx, 
D'' = ∂D, and (4) can be written as an integral over boundary 
∂D. Certainly, variation δK is caused by variation δx (or δφ), and 
we need to represent δK in terms of δx or δφ. Following 
Santosa [1996], as illustrated in Figure 2, δK can be related to 
δx by δK = (Kint−Kext) n(x)• δx |x ∈∂D, where n(x) = ∇φ(x)/ |∇φ(x)| 
is the normal direction of the curve at x. We can assume that 
each point x on ∂D moves in the normal direction of boundary 
∂D at this point, δx = α(x) n(x), where α(x) can be viewed as 
the propagation speed of the boundary at point x. Substituting 
expressions of δx and δK into the integral 
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Fig. 2 Relationship between δK and δx
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To ensure that δF(K) is negative during the iterative procedure,  α is chosen as 

( ) (int ext 0( ) sgn ( )TK K J H K hα = − − −x       (6) 

where sgn is the sign function, which returns the sign of its argument. Since the boundary is propagated 
at speed α, the direct measurements of the saturated hydraulic conductivity can be incorporated easily by 
setting the initial field to honor the measured hydraulic conductivity and then forcing the propagation 
speed to be zero at these measurement locations such that the boundary will not across these locations. 
 
The physical meaning of (6) can be explained as follows. With no loss of generality, consider the case in 
which Kint< Kext. Suppose that at point x at a given iteration, the modeled head values are too high 
compared to the measured values (i.e., H(K) > h0), and that an increase of hydraulic conductivity value at 
x will increase the head at the observation points (i.e., J(K) > 0). In this case, the α value at point x 
computed from (6) will be positive, signifying that boundary ∂D at point x should move outwards. As a 
result, the hydraulic conductivity value at x decreases from Kext to Kint, which will lead to a decrease in 
modeled head values in the new iteration. 
 
Note that the propagation speed α(x) combines contributions from all observation points. If the sensitivity 
values of head at observation points xi and xj to hydraulic conductivity at x are the same, the point with 
larger head residual will exert more influence on the propagation speed in the next iteration. On the other 
hand, if the head residuals at two observation points (or times) are the same, the point with a higher 
sensitivity value will be more influential. Finally, should the modeled head match the observed head, the 
boundary would stop evolving. 
 
The final step is to derive an equation for the evolution of φ(x). The variation of x can be related to that of 
φ by taking the variation of equation φ(x) = 0, δφ(x) + ∇φ(x) • δx = 0. If the function φ(x) is expressed as a 
function of both x and an artificial time τ, φ = φ(x, τ), the evolution of φ(x, τ) accordingly defines the 
evolution of boundary ∂D(τ) = {x : φ(x, τ) = 0}. For sufficiently large τ, ∂D = {x : φ(x, τ) = 0} defines the 
spatial distribution of two materials and gives the solution to the inverse problem. Substituting 
expressions of δx into above variational relationship and recalling the definition of n(x), an initial value 
problem for φ(x, τ) is derived, 
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which is called the level set equation. The solution of this equation over the artificial time τ gives the 
boundary ∂D(τ) and eventually the solution stablizes, representing the solution to the inverse problem. 
 

ILLUSTRATIVE EXAMPLES 
 
In this section, we illustrate the level set method with a two-dimensional synthetic example. The test 
system consists of steady-state, saturated water flow in a rectangular domain of 100 m × 100 m, 
discretized into elements of a size 1 m × 1 m. The true (synthetic) permeability field is shown in Figure 
3(a), in which a lower-permeable layer (k = 10-13 m2) is embedded in the background material (k = 10-10 
m2), offset by a fault, and observed at two boreholes. Lacking other constraining information, the 
geometry of the lower-permeable unit based on the traditional geological correlation will be incorrectly 
interpreted as a laterally connecting bed in the region between the two dashed lines. No matter how many 
observed head or concentration data are available, the parameter estimates from model calibration using 
this incorrect geological model certainly will yield erroneous results, and thus the prediction of flow and 
solute transport based on these parameter estimates will also be incorrect. The boundary conditions are 
prescribed as constant head at left (H1 = 10.5 m) and right (H2 = 10.0 m) boundaries and no flow at the 
two lateral boundaries. The steady-state flow equation is solved for the synthetic permeability field, and 
36 steady-state head measurements at various locations (see Fig. 3a) are assumed to be available.  
 
Since the lower-permeable unit has been observed at two wells, we initialize the iterative procedure by 
choosing an initial setting of lower-permeable zones as depicted in Fig. 3(b) and the initial level set 
function φ0(x) is choosing as a signed distance function with this initial boundary of lower-permeable unit. 
The flow equation is then solved using the initial permeability field and the pseudo velocity field α(x) is 
computed based on the difference between the modeled head and the observed head using (6).  Finally, 
the boundary is propagated by solving the level set equation (7). The new boundary of low-permeability 
zones is determined by the set ∂D = {x : φ(x) = 0}. This process is repeated until either the prescribed 
number of updates has been reached or the difference between the modeled head and the observed 
head is smaller than a prescribed value. To prevent steep or flat gradients of the level set function φ(x), 
the function is periodically reinitialized to a signed distance function, i.e., φ(x) = −d(∂D, x) for x ∈ D or  
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Figure 3. An illustrative example. (a) The problem configuration. The region between two 
dashed-lines is the possible lower-permeable zone identified by the traditional geological 
correlation. (b) Initial lower permeable zones in the proposed approach, based on borehole 
observation. (c-f) Identified lower-permeable units at several iteration steps. 



φ(x) = d(∂D, x) for x ∈ DC, where d represents the distance between point x and boundary ∂D. Note that 
this reinitialization will not change the boundary ∂D. The evolution of the boundary ∂D is depicted in 
Figure 3c-3f, where the artificial time τ represents the number of updates. The final inversion results (Fig. 
3f) are very similar to the true structures and head distribution, indicating that the level set method can be 
used to efficiently identify parameter zonation.   
 

SUMMARY AND FURTHER WORK 
 
This paper is a preliminary study proposing a new inverse algorithm based on the level set method. In this 
method, the boundary of low- (or high-) permeability zones is represented by the zero level function. 
Starting from an initial setting of zones, their boundary is sequentially evolved to reduce the difference 
between the observed hydraulic head and the modeled head. The propagation speed of the boundary at 
any iteration is proportional to the sensitivity of head to the permeability field and the residual between the 
observed and modeled head at various measurement locations and observation times. The synthetic 
example presented showed that the level set method can efficiently identify the parameter structure. 
 
These promising initial results suggest that further work is warranted to explore the level set method in 
more detail. Future work will include extending the method to incorporate transient head response data; 
using other data sets beyond simply head data (solute concentration or travel time measurements); 
consideration of measurement error and data density into the evaluation of the method; and developing 
methods for the joint inversion for shape and permeability of the individual zones. Furthermore, for 
maximum usefulness, the method should be extended to account for an arbitrary number of stratigraphic 
units, each with a distinct unknown value of permeability. Finally, one important issue that needs to be 
addressed in the future is the uncertainty associated with the prediction of internal boundaries between 
different materials, which may provide direct input to the random domain decomposition method of Winter 
and Tartakovsky [2000] for better quantifying flow and solute transport in subsurface.. 
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